[This question paper contains 4 printed pages.]

Your Roll No. 2022

Sr. No. of Question Paper: 2792

A

Unique Paper Code

62354443

Name of the Paper

: Analysis (LOCF)

Name of the Course

: B.A. (Prog.)

Semester

: IV

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All questions are compulsory.
- 3. Attempt any two parts from each question.
- 4. All questions carry equal marks.
- 1. (a) Find the supremum and infimum of the following sets, if they exist

(i)
$$E = \left\{ 1 + \frac{(-1)^n}{n} : n \in N \right\}$$

(ii)
$$F = \left\{2, \frac{3}{2}, \frac{4}{3}, \dots, \frac{n+1}{n}, \dots\right\}$$

State Sequential criterion of continuity. (b)

Define
$$f: \mathbb{R} \to \mathbb{R}$$
 by $f(x) = \begin{cases} 1, & \text{when } x \text{ is rational} \\ 0, & \text{when } x \text{ is irrational} \end{cases}$.

Show that f is discontinuous on \mathbb{R} .

- Give an example of a non-empty bounded subset S of R whose supremum and infimum both belong to $R \sim S$.
- Test for convergence the series

$$\sum_{n=1}^{\infty} \left(\sqrt{n^4 + 1} - \sqrt{n^4 - 1} \right)$$

2. (a) Show that
$$f(x) = \begin{cases} \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

is discontinuous at x = 0

- State Archimedean Property of real numbers. Use it to prove that if t > 0, there exists $n_t \in \mathbb{N}$ such that $0 < 1/n_t < t$.
- Show that the function $f(x) = x^2$ is uniformly continuous on]-2, 2[.
- (d) Prove that if

$$a_n = \frac{1}{n} \{ (n+1)(n+2)....(n+n) \}^{1/n}$$

then
$$\langle a_n \rangle$$
 converges to $\frac{4}{e}$.

- 3. (a) Prove that every Cauchy sequence is bounded but converse need not be true.
 - (b) Prove that the series

$$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$$
 converges.

- (c) Show that the sequence $\langle s_n \rangle$ where $S_n = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ is convergent.
- (d) Show that $\lim_{n\to\infty} \frac{1+3+5+....+(2n-1)}{n^2} = 1$.
- 4 (a) Show that the series $1+r+r^2+r^3+....(r>0)$ converges if r<1 and divergence if $r\geq 1$.
 - (b) Show that the sequence $\langle a_n \rangle$ where $a_n = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-1}}$ converges. Find $\lim_{n \to \infty} a_n$?
 - (c) Test for convergence the series

$$\frac{x}{2\sqrt{3}} + \frac{x^2}{3\sqrt{4}} + \frac{x^3}{4\sqrt{5}} + \dots (x > 0)$$

- (d) Show that the series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{3/2}}$ is convergent.
- 5 (a) Define Alternating series of real numbers. Test for the convergence and absolute convergence of the series.

MAINE, NOW DOT

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

(b) Prove that every continuous function is integrable.

(c) Define a conditionally convergent series. Test for the convergence and absolute convergence of the series.

$$\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{2^n+5}.$$

(d) Test for convergence the series

$$\sum_{n=1}^{\infty} \frac{1.3.5....(2n-1)}{2.4.6....2n} \cdot \frac{1}{n}$$

6 (a) Define Riemann integrability of a bounded function f on a bounded closed interval [a, b]. Show that the function f defined on [a, b] as

$$f(x) = \begin{cases} 0, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational} \end{cases}$$

is not Riemann integrable.

(b) Test for convergence the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cos n \alpha}{\sqrt{n^3}}, \alpha \text{ being real.}$$

- (c) Integrate the function f(x) = x[x] on [0, 4], where [x] denotes the greatest integer not greater than x.
- (d) Show that the sequence $\langle a_n \rangle$ defined as $a_n = 1 + \frac{1}{6} + \frac{1}{11} + \dots + \frac{1}{5n-4}$ is not a Cauchy sequence.

Deshbandnu.College Library Kalkaji, New Delhi-19 [This question paper contains 4 printed pages.]

Your Roll No. 2022

Sr. No. of Question Paper: 2819

A

Unique Paper Code

: 62354443

Name of the Paper

: Analysis (LOCF)

Name of the Course

: B.A. (Prog.)

Semester

: IV

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt 1. of this question paper.
- All questions are compulsory. 2.
- Attempt any two parts from each question. 3.
- All questions carry equal marks. 4.

Deshbandnu, College Library Kalkaji, New Delhi-19

- (a) Let $S = \{x \in \mathbb{R} : x \ge 0\}$. Show in detail that the set S has lower bounds, but no upper bounds. Show that inf S=0. Verify your answer. 1.
 - Define continuity of a real valued function at a point. (b)

Show that the function defined as $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ 6, & x = 3 \end{cases}$

is continuous at x = 3.

Let S be a non empty bounded set in \mathbb{R} . Let a > 0, and let aS = $\{as: s \in S\}$. Prove that $\inf aS = a \inf S$, $\sup aS = a \sup S$.

- (d) Test for convergence the series those nth term is $\left(\frac{\sqrt{n+1}-\sqrt{n-1}}{n}\right)$.
- 2. (a) A function f is defined by

$$f(x) = \begin{cases} \frac{1}{2} - x, & \text{if } 0 < x < \frac{1}{2} \\ \frac{3}{2} - x, & \text{if } \frac{1}{2} \le x < 1 \end{cases}$$

Evaluate
$$\lim_{x \to \frac{1}{2}} f(x)$$

- (b) Define order completeness property of real numbers. State and prove Archimedean Property of real numbers.
- (c) Show that the function f defined by $f(x) = x^3$ is uniformly continuous in the interval [0, 3].
- (d) Prove that a necessary and sufficient condition for a monotonically increasing sequence to be convergent is that it is bounded above.
- 3. (a) State Cauchy's second Theorem on Limits. Prove that

$$\lim_{n\to\infty}\left[\frac{(2n)!}{(n!)^2}\right]^{1/n}=4$$

- (b) Test for convergence the series whose nth term is $u_n = \frac{n^{n^2}}{(n+1)^{n^2}}$
- (c) State Cauchy's general principle of convergence. Apply it to prove that the sequence $\langle a_n \rangle$ defined by

$$a_n = 1 + \frac{1}{4} + \frac{1}{7} + \dots + \frac{1}{3n-2}$$
 is not convergent.

(d) Prove that a sequence of real numbers converges if and only if it is a Cauchy sequence.

- 4 (a) State D'Alembert's ratio test for the convergence of a positive term series.

 Use it to test for convergence the series $\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n + 1}$
 - (b) A sequence $\langle a_n \rangle$ is defined as follows:

$$a_1 = 1$$
, $a_{n+1} = \frac{4+3a_n}{3+2a_n}$, $n \ge 1$

Show that sequence $\langle a_n \rangle$ converges and find its limit.

(c) Show that the series

$$\sum_{n=1}^{\infty} \frac{2.4.6....2n}{1.3.5....(2n+1)}$$
 diverges.

- (d) Prove that if a function f is continuous on a closed and bounded interval [a, b], then it is uniformly continuous on [a, b].
- 5 (a) State Leibnitz test for convergence of an alternating series of real numbers. Apply it to test for convergence the series $\frac{1}{\sqrt{1}} \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} \frac{1}{\sqrt{7}} + \dots$
 - (b) Show that the function f defined by

$$f(x) = \begin{cases} 0, & \text{when } x \text{ is rational Deshbandnu. College Library} \\ 1, & \text{when } x \text{ is irrational Kalkaji, New Delhi-19} \end{cases}$$

is not integrable on any interval.

(c) Test for convergence and absolute convergence of the following series

$$\frac{1}{1.2} - \frac{1}{3.4} + \frac{1}{5.6} - \frac{1}{7.8} + \dots$$

- (d) Show that the sequence defined by $\langle a_n \rangle = \left\langle \frac{n}{n+1} \right\rangle$ is a Cauchy sequence.
- Show that every Monotonic function on [a, b] is integrable on [a, b]

- (b) Test the convergence of the series $\sum_{n=1}^{\infty} (-1)^n \frac{\sin n\alpha}{n^p}$, p > 0. Is this series absolutely convergent.
- (c) Show that the function f(x) = [x], where [x] denotes the greatest integer not greater than x, is integrable over [0, 3] and $\int_a^3 [x] dx = 3$
- (d) Show that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \tan \frac{1}{n}$ is convergent.

Deshbandnu College Library Kalkaji, New Delhi-19